

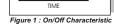
Introduction to Temperature Control. 2 Installation 5 Layout of Front and Rear Panels 8 Key Features 9 Set-up Procedure Flow Diagram 10 Function Description Table 14 Detailed Function Description 18 Error Messages and Troubleshooting Tables 26 Specifications 27

Introduction to Temperature Control

The Basics of ON/OFF Control

In this simple form of control, the controller output switches off when the process temperature reaches the setpoint. The process cools until the recovery level is reached and power is reapplied to the process. The resulting process temperature oscillates through this hysteresis band (the band between setpoint and recovery levels) as illustrated in Figure 1. On/Off Control is ideal for large capacity processes (processes that have slow temperature changes and are insensitive to disturbances) because the hysteresis band can be set very narrow, minimising temperature oscillations.

Typical Applications: Simple Example:


- Airconditioning
 The thermostat of a household heater uses On/Off control. When the room temperature
- Oil heaters
 reaches the setpoint, a switch opens and turns the heater off. The switch remains off
- Bain Marie catering equipment

2

until the room temperature drops below the setpoint causing the switch to close, turning the heater on again. The heater is either ON or OFF.

The Basics of Trip & Recovery Control

Trip and Recovery mode facilitates control of two independent setpoints. In heating, each trip point represents the temperature above which the relay is de-energised and the heating mechanism is de-activated. The recovery points represent a temperature below which the relay is re-energised and the heating mechanism is turned on. This feature can also be used in cooling applications. Each trip point will then represent the temperature below which the relay is de-energised and the cooling mechanism is de-activated. The recovery points represent the temperature above which the relay is re-energised and the cooling mechanism is turned on. A typical application where two fans are used to control a process is shown in Fig. 2. The first fan is activated at 300 and remains on until the temperature falls below 250 , while the second switches on at 350 and switches off at 280 .

SETPOINT

/ HYSTERESIS

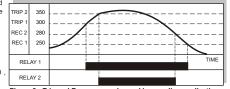


Figure 2 : Trip and Recovery mode used in a cooling application

Introduction to Temperature Control

The Basics of PID Control

In applications where precision control is required, including small capacity processes that react quickly to disturbances, it is necessary to provide a more sophisticated method of temperature regulation than that of ON/OFF control.

For example, ON/OFF control would be ineffective in controlling the temperature of a bathroom shower as the person would be subjected to alternative bursts of HOT and COLD water, neither of which is desirable.

It is necessary to establish a proportion of hot to cold water to maintain the required temperature.

Proportional Control (P)

Proportional control provides added temperature stability by eliminating temperature fluctuations by setting the proportion of power supplied to the process depending on the difference between process and setpoint temperatures. Unfortunately, the process temperature only settles at the setpoint if the heat source (heater) matches the heat load of the process EXACTLY. Heaters and processes are rarely matched and therefore the process temperature usually settles at a

value offset from the setpoint as shown in Figure 3.

3

TIME Figure 3 :

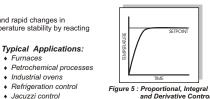
Proportional Control Characteristic

Proportional and Integral Control (PI)

To compensate for the offset resulting in proportional only control, a second control term known as Integral Action is introduced.

Integral Action eliminates the offset by responding to **duration** of the error signal (through integration) and automatically forcing the process temperature to settle exactly at the setpoint after a period of time. This is achieved by small adjustments in the proportional output. Figure 4 : Proportional and Integral Control Characteristic

Introduction to Temperature Control


The Basics of PID Control (Continued)

Proportional, Integral and Derivative Control (PID)

In many small capacity processes, the controller must respond quickly to large and rapid changes in temperature caused by disturbances. Derivative action provides additional temperature stability by reacting to the rate of change of the process temperature.

Simple Example:

An injection moulding machine benefits from PID control. Proportional control ensures that the plastic temperature is stable and does not oscillate. Integral control maintains accuracy by keeping the temperature exactly at the setpoint over long periods. Derivative action forces the temperature back to the setpoint quickly when the cold plastic pellets enter the melting chamber.

and Derivative Control Characteristic

For optimum PID control, the controller parameters (P, I and D values) should be tuned for each temperature process. This can be performed manually or automatically by activating the Autotune function. This facilitates precision control at the setpoint temperature and makes the unit easy to set up.

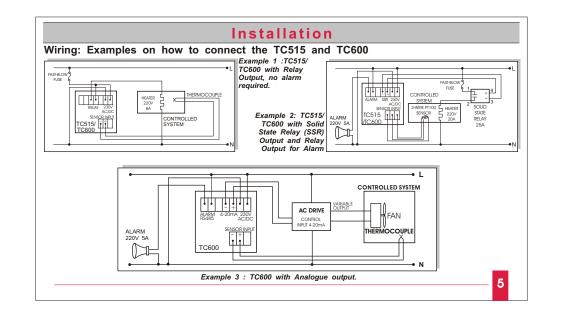
Typical Applications:

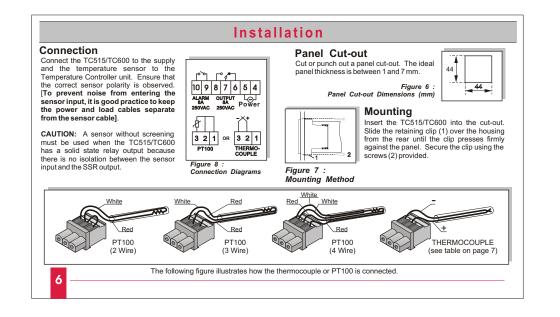
Furnaces

Industrial ovens

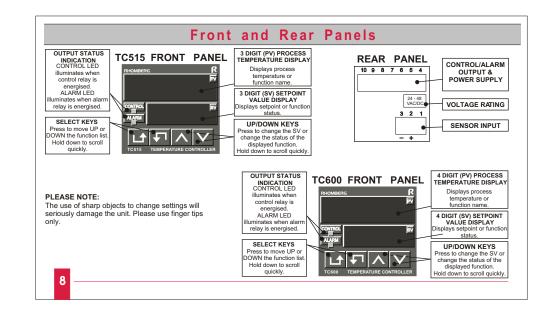
Jacuzzi control

Refrigeration control


Injection moulding

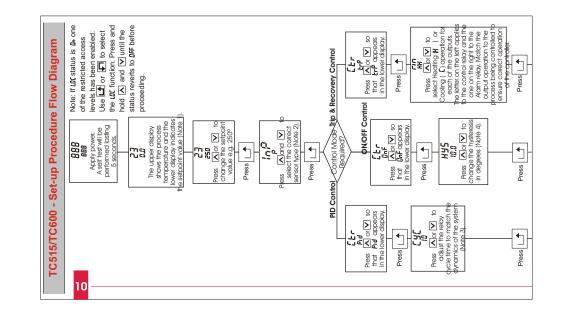

Anti-Reset Wind-Up

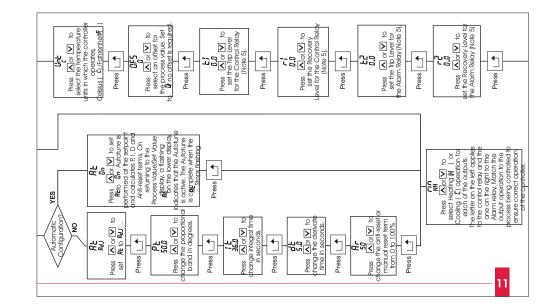
Δ

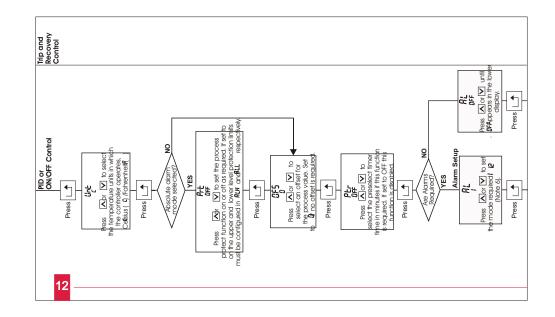

Anti-reset wind-up, sometimes referred to as manual reset, is automatically calculated during the Autotune function but can also be manually set, if required. It is used in conjunction with proportional, integral and derivative terms to speed up the time it takes a process to reach its setpoint temperature while minimising overshoot.

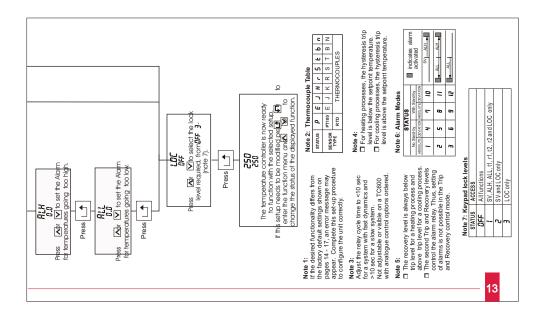
This term represents the percentage power that a proportional only system would require to maintain its setpoint temperature. Example: A user would set the anti-reset term to 30 for a system requiring 30% power to maintain its setpoint temperature.

hermocou	ole Refe	rence T	able :										
		S T A N D A R D											
TYPE	BR BS	TISH 1843		RICAN VICI 96.1	GER DIN 43	MAN 1710-4		NCH 18001	LEC .	DIN 584-3			
E +	BROWN	BROWN	BROWN	PURPLE	BLACK	RED	PURPLE	YELLOW	PURPLE	PURPLE			
	BROWN	BLUE	DROWIN	RED	BLACK	BLACK	PURPLE	PURPLE	PURFLE	WHITE			
+	DLACK	YELLOW	BROWN	WHITE	BLUE	RED	BLACK	YELLOW	BLACK	BLACK			
J_	BLACK	BLUE	BROWIN	RED	BLUE	BLUE	BLACK	BLACK	DLACK	WHITE			
K +	RED	BROWN	YELLOW	YELLOW	GREEN	RED	YELLOW	YELLOW	GREEN	GREEN			
K _	RED	BLUE	YELLOW	RED	GREEN	GREEN	YELLOW	PURPLE	GREEN	WHITE			
R +	0.05511	WHITE	ODEEN	BLACK	WHITE	RED	GREEN	YELLOW	ORANGE	ORANGE			
_ ۲۲	GREEN	BLUE GREEN	RED	WHILE	WHITE	GREEN	GREEN	ORANGE	WHITE				
S +	0.0551	WHITE	GREEN	BLACK	WHITE	RED	GREEN	YELLOW	ORANGE	ORANGE			
	GREEN	BLUE	GREEN	RED	WHITE	WHITE	GREEN	GREEN	ORANGE	WHITE			
T +	DUUE	BLUE	WHITE	BROWN	BLUE	BROWN	RED	BLUE	YELLOW	BROWN	BROWN		
	BLUE	BLUE	BROWN	RED	BROWIN	BROWN	BLUE	BLUE	BROWIN	WHITE			
в +					ODEV	RED							
_ В _					GREY	GREY							
N ⁺	ORANGE	ORANGE	BROWN	ORANGE					PINK	PINK			
- IN -	ORANGE	BLUE	BICOWIN	RED					L II NK	WHITE			




TC515/TC600 - Key Features


- □ Simultaneous display of process and setpoint temperatures, TC515 3 digits, TC600 4 digits.
- □ Autotune PID control with programmable P,I,D and anti-reset windup terms.
- On/Off control with programmable hysteresis.
- □ Two independently programmable trip and recovery levels with separate outputs.
- Two programmable alarm levels configurable in 12 modes with a single output.
- Control/Alarm output options, 8A relay or solid state relay drive.
- □ Analogue control output options (TC600 only), 0-20mA, 4-20mA, 0-5V or 0-10V.
- Programmable to accept 9 sensor types.
- □ Programmable control for cooling or heating applications.
- □ Programmable operation in degrees Celsius or degrees Fahrenheit.
- Process protect facility to prevent changing the setpoint outside the alarm limits.
- □ Programmable process temperature offset to cancel the effects of temperature gradients within the process.


9

- □ A 16 hour preselect timer for batch processing.
- □ A programme lock which may be set according to the access level required.

DISPLAY	FUNCTION	STATUS OPTIONS	FACTORY SETTINGS	SCOPE	NOTES
nP	INPUT TYPE	status P E J H r S E b n INPUT P1100 E J K R S T B N SENSOR RTD THERMOCOUPLES <	(PT100)	Available in all control modes.	See page 18 for a more detailed description.
[tr	CONTROL MODE	STATUS DESCRIPTION APPLICATIONS P.d PID Control Precision Control ØnF ON/OFF Control Non-critical Applications Lr.ρ Trip & Recovery Applications requiring 2 fully configurable relay outputs	(On/Off)	Available in all control modes.	See page 1 for a more detailed description
HYS	ON/OFF HYSTERESIS	STATUS LIMITS ON/OFF hysteresis in degrees 0 - 99.9°	10.0	Available in On/Off control mode only.	See page 1 for a more detailed description
САС	PID RELAY CYCLE TIME	STATUS LIMITS PID Relay Cycle	(10 seconds)	Available in PID control mode with non-analogue control option only.	See page 1 for a more detailed description
RĿ	PID AUTOTUNE	STATUS PID AUTOTUNE OFF Disabled ON Enabled Rd J Manual adjustment	OFF	Available in PID control mode only.	See page 19 for a more detailed description.

DISPLAY	FUNCTION	STATUS OPTIONS	FACTORY SETTINGS	SCOPE	NOTES
PĿ	PROPORTIONAL TERM	STATUS LIMITS AUTOTUNE CONFIGURED Proportional band in degrees 0.5° - 999° YES	50.0	Available in PID control mode only.	See page 1 for a more detailed description
ιĿ	INTEGRAL TERM	STATUS LIMITS AUTOTUNE CONFIGURED Integral time in seconds 0 - 999 secs YES	36.0 (36 seconds)	Available in PID control mode only.	See page 2 for a more detailed description
dĿ	DERIVATIVE TERM	STATUS LIMITS AUTOTUNE CONFIGURED Derivative time in seconds 0 - 999 secs YES	5.0 (5 seconds)	Available in PID control mode only.	See page 2 for a more detailed description
8r	ANTI-RESET WINDUP	STATUS LIMITS AUTOTUNE CONFIGURED Anti-reset windup as a percentage of full power 0 - 100% YES	50 (50%)	Available in PID control mode only.	See page 2 for a more detailed description
רוח	RELAY INVERSION	STATUS CONTROL RELAY ALARM RELAY HH Heating Heating CH Cooling Heating HC Heating Cooling CL Cooling Cooling	HH (Heating / Heating)	Available in all control modes.	See page 2 for a more detailed description.
Unt	TEMPERATURE	STATUS ALL TEMPERATURE VALUES [In degrees - Celsius In degrees - Fahrenheit	 (°C)	Available in all control modes.	See page 2 for a more detailed descriptior

TC51	5/TC60	0 - Function Descr	FACTORY	n Tal	ble
DISPLAY	FUNCTION	STATUS OPTIONS	SETTINGS	SCOPE	NOTES
Prt	PROCESS PROTECT	STATUS PROCESS PROTECT ØFF Disabled Disabled ØN Enabled Disabled	(Disabled)	Available in PID and ON/OFF control modes only.	See page 21 for a more detailed description.
OFS	PROCESS OFFSET	STATUS PROCESS OFFSET 0 Disabled TC515 - 590° - 990° Offset in degrees TC600 - 273° - 2000° Offset in degrees	(No Offset)	Available in all control modes.	See page 22 for a more detailed description.
Ptr	PRESELECT TIMER	STATUS TIMER STATUS 0 Disabled 1 - 999 Preselected Time in minutes	(Disabled)	Available in PID and ON/OFF control modes only.	See page 22 for a more detailed description.
El	TRIP 1	STATUS LIMITS Control Relay Trip Point in degrees TC515 -99° - 999° TC600 -273° - 2000°	0.0	Available in Trip & Recovery control mode only.	See page 23 for a more detailed description.
-1	RECOVERY 1	STATUS LIMITS Control Relay Recovery TC515 -99° - 999° Point in degrees TC600 -273° - 2000°	0.0	Available in Trip & recovery control mode only.	See page 23 for a more detailed description.
£5	TRIP 2	STATUS LIMITS Alarm Relay Trip TC515 -99° - 999° Point in degrees TC600 -273° - 2000°	0.0	Available in Trip & Recovery control mode only.	See page 23 for a more detailed description.

DISPLAY	FUNCTION	STATUS OPTIONS	FACTORY SETTINGS	SCOPE	NOTES
r2	RECOVERY 2	STATUS LIMITS Alarm Relay Recovery Point in degrees TC515 -99° - 999° TC600 -273° - 2000°	0.0	Available in Trip & Recovery control mode only.	See page 2 for a more detailed description
AL	ALARM MODE	Status Image: Status No.5000 dy Win Stand by Match and y AMECLUTE [OVATRO] AREALUTE [OVATRO] AREALUTE [OVATRO] AREALUTE [OVATRO] SV AMEL 1 4 7 10 SV AMEL 2 5 8 11 AMEL AMEL AMEL 3 6 9 12 AMEL AMEL AMEL	(Alarm disabled)	Available in PID & ON/OFF control modes only.	See page 2 for a more detailed description
ALH	ALARM HIGH	STATUS LIMITS Upper Alarm TC515 - 99° - 999° level in degrees TC600 - 273° - 2000°	0 .0 (0°)	Available in PID & ON/OFF control modes only.	See page 2 for a more detailed description
ALL	ALARM LOW	STATUS LIMITS Lower Alarm TC515 - 99° - 999° level in degrees TC600 - 273° - 2000°	0.0	Available in PID & ON/OFF control modes only.	See page 2 for a more detailed description
LOC	KEYPAD LOCK	STATUS ACCESS ØFF Alf functions I SV, ALH, ALL, 11, r1, t2, r2 and LOC only 2 SV and LOC only 3 LOC only	(Full access)	Available in all control modes.	See page 2 for a more detailed description

Set InP to select the correct input sensor type, P (PT100), E, J, H(K), r, 5, E, b or n. Note: If the input type and the sensor connected do not match, the process value will be inaccurate or an error code may be displayed.

した「 CONTROL MODE

The control mode determines whether or not many of the other functions in the menu are visible. Only functions relevant to the currently selected control mode will appear when scrolling through the controller's menu.

Set **Lr** to **P**₁**d** for PIDcontrol. This control modeshould be used where precise control is required. When selected for the first time the Autotune function should be activated (See **Rb**).

Set CLr to OnF for ON/OFF control. This control modeshould be used for non critical applications.

Set *CL* to *U*^{-*P*} for Tripand RecoveryControl. Thiscontrol modeshould be used when control withtwo independent trip and recovery levels, each with its own output, is required.
 <u>Note:</u> With trip and recovery control selected, *L*^{-*P*} will appear in the lower (SV) display while the process temperature is being displayed. The four set values *LI*, *rL*² and *r2* must be configured in their respective functions. The alarm output becomes the second control output and as a result all alarm levels will be ignored.

18

The HJS value represents the ON/OFF control hysteresis in degrees and is only used when the control mode is set to ON/OFF. It can be adjusted from 0° to 99,9°, defining the recovery point for ON/OFF control. ON/OFF control takes place in the hysteresis band between the setpoint and the recovery point, sometimes referred to as the deadband.

696 PID RELAY CYCLE TIME

The CYC value represents the PID relay cycle time in seconds and is only used when the control mode is set to PID. It can be adjusted from 1 to 240 seconds. The faster the process the smaller the cycle time will have to be for the controller to maintain control. For best results this value should be set as low as can be tolerated by the load and switching device. Note: **CYC** is not visible or adjustable on a TC600 with one of the analogue control options ordered.

AL **PID AUTOTUNE**

Set **AL** to **On** to start the Autotune function.

P

While the Autotune function is active, **AL** will flash on the lower (SV) display while the process temperature is being displayed. The Autotune function calculates P,I,D and Anti-reset terms by cycling the process 3 times. The time it takes to complete an Autotune will therefore depend on the speed of the process.

Once completed **AL** will automatically return to **DFF**. The controller will revert to PID control using the new P,I,D and Anti-reset terms. These terms are also saved for future use whenever PID control is selected.

Set RL to DFF to abort the Autotune function and revert to PID control with previously saved P,I,D and Anti-reset terms. Set AL to AdJ to manually adjust the PID parameters (see PL, IL, dL and Ar).

E PID CONTROL - PROPORTIONAL BAND

The *PL* value represents the PID control proportional band term in degrees. It is only used during PID control and only visible with *RL* set to *RdJ*. It is automatically set by the Autotune function but it can also be manually adjusted between 0.5° to 999°. See tip on setting P, I and D terms. 19

IL PID CONTROL -INTEGRAL TIME

The *IL* value represents the PID control Integral time term in seconds. It is only used during PID control and only visible with *RL* set to *RdJ*. It is automatically set by the Autotune function but it can also be manually adjusted between 0 and 999 seconds. See tip for setting P, I and D terms.

DC PID CONTROL - DERIVATIVE TIME

The *dL* value represents the PID control Derivative time term in seconds. It is only used during PID control and only visible with *RL* set to *RdL*. It is automatically set by the Autotune function but it can also be manually adjusted between 0 and 999 seconds. See tip on setting P, I and D terms.

TIP: Setting of P, I and D terms.

20

Reduce the proportional band to get a fast enough rise time, increase the derivative time until the overshoot is reduced to an acceptable level, and then adjust the integral time (if necessary) to eliminate the steady state error. Make small incremental changes rather than large changes and if the system becomes unstable activate the Autotune function to let the controller recalculate the values.

The **Ar** value represents the percentage of full power that a proportional only system would require to maintain its setpoint. It is only used during PID control and only visible with **AL** set to **AdJ**. It is automatically set by the Autotune function but it can also be manually adjusted between 0 and 100%.

Example: Set the anti-rest term to 30 for a system requiring 30% power to maintain its setpoint temperature.

ITI RELAY INVERSION

Each of the outputs (control and alarm) can be configured to be either ON or OFF when the process value is compared to the set value. In a heating process for example the output should be on when the process value is much lower than the set value. For a cooling process the reverse is true.

The rin function allows the state of the output relays to be individually configured, ensuring fail safe control of either heating (μ) or cooling (c) applications. The relay inversion status is represented by two letters, the one on the left applies to the control relay and the one on the right to the alarm

The relay inversion status is represented by two letters, the one on the left applies to the control relay and the one on the right to the alarm relay.

Set Unc to configure the temperature units in which the controller operates, Celsius ([) or Fahrenheit (H). Note: The units selected apply to all temperature related controller settings i.e. All parameters that are in degrees.

This unique feature offers added safety to critical processes. It is only available in PID and ON/OFF Control Modes and when one of the absolute alarm modes is selected (see RL).

Set PrE to Gn to prevent the operator from adjusting the set point value (SV) outside the alarm limits set in RLH and RLL

21

□ Set PrL to OFF to allow unrestricted adjustment of the set point value (SV).

DFS PROCESS OFFSET

In applications where the temperature sensor is situated some distance from the heat source of a process, a consistent temperature difference may exist between actual and displayed temperatures.

• Set **OFS** to the difference between the required temperature and the displayed temperature.

The process is then controlled to the new displayed temperature, taking the process offset into account.

Example: If a temperature of 240° is displayed when the actual temperature is 250°, a process offset of +10° is entered so that 250° is displayed.

PRESELSECT TIMER

This timer function is ideal for batch processing applications. It is only available in PID and ON/OFF Control modes. Once activated it will allow the process to reach the setpoint temperature, maintain this temperature for the preselect time period, then deactivate the control relay, shutting the process down (see figure 9).

- Set PEr to the preselect time (in minutes) that the process must remain on once the . setpoint has been reached. This value can be adjusted up to 999 minutes (16 hours 39 minutes). The time only starts once the process temperature reaches the setpoint temperature. Once the controller is timing, PEr will flash in the lower (SV) display. When the time has elapsed and the process has been shut down the lower display will show PEr and the upper display will flash DFF.
- The process can be re-triggered by pressing any one of the select keys or by cycling power to the controller.
- **___** Set **Ptr** to **0** to disable this function.

P

22

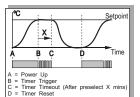


Figure 9 : Timer Operation

E / TRIP POINT FOR THE CONTROL RELAY

The *Ll* value represents the trip point in degrees for the control relay when the Control Mode is set to Trip and Recovery (see *LLr*). It can be adjusted from -99° to 999° (TC515) or from -273° to 2000° (TC600).

The *rl* value represents the recovery point in degrees for the control relay when the Control Mode is set to Trip and Recovery (see *LLr*). It can be adjusted from -99° to 999° (TC515) or from -273° to 2000° (TC600).

TRIP POINT FOR THE ALARM RELAY

The *L2* value represents the trip point in degrees for the alarm relay when the Control Mode is set to Trip and Recovery (see *LLr*). It can be adjusted from -99° to 999° (TC515) or from -273° to 2000° (TC600).

RECOVERY POINT FOR THE ALARM RELAY

The *r*² value represents the recovery point in degrees for the alarm relay when the Control Mode is set to Trip and Recovery (see *LLr*.). It can be adjusted from -99° to 999° (TC515) or from -273° to 2000° (TC600).

23

AL_ ALARM MODE

Alarms are only available in the PID and ON/OFF control modes (see []-).

□ Absolute alarm modes

When any of the ABSOLUTE ALARM MODES are selected (Status 1, 2, 3, 7, 8, 9) the alarm levels ALH and ALL represent absolute temperatures above and/or below which the alarm activates.

EXAMPLE:

TI $\mathbf{R}_{L}=1$ (HIGHABSOLUTE ALARM) is selected with $\mathbf{R}_{L}\mathbf{H}$ at 50°, then the alarm will be activated at 50° irrespective of the SV.

Deviation alarm modes

24

When any of the DEVIATION ALARM MODES are selected (Status 4, 5, 6, 10, 11, 12) the alarm levels ALH and ALL represent when any of the DEVIATION ALARM MODES are selected (Status 4, 5, 6, 10, 11, 2) the alarm levels ALH and ALL deviations above and below the setpoint temperature. A process temperature falling outside of these limits triggers the alarm. <u>EXAMPLE:</u> If $\mathbf{RL} = 4$ (HIGH DEVIATION ALARM) is selected with \mathbf{RLH} at 50° and SV = 150°, the alarm will be activated at 200°.

□ Alarm modes with stand-by

When any of the STAND-BY ALARM MODES are selected (Status 7 to 12) the ALARM levels are disabled after power-up until the process temperature reaches the setpoint. Hereafter the alarm is activated whenever the temperature exceeds and/or falls below the corresponding ALARM level.

Without STAND-BY selected (Status 1 to 6) all alarm levels are available immediately after power up.

ALH HIGH LEVEL ALARM

The **RLH** value represents the high alarm level in degrees. It is the temperature above which the alarm activates if enabled in alarm mode (see **RL** status 1,2,4,5,7,8,10 or 11). It also acts as the upper limit that the set value can be set to if the process protect function is enabled (see **PrL**). It can be adjusted from -99° to 999° (TC515) or from -273° to 2000° (TC600).

The **RLL** value represents the low alarm level in degrees. It is the temperature below which the alarm activates if enabled in alarm mode (see **RL** status 2,3,5,6,8,9,11 or 12). It also acts as the lower limit that the set value can be set to if the process protect function is enabled (see **P-E**). It can be adjusted from -99° to 999° (TC515) or from -273° to 2000° (TC600).

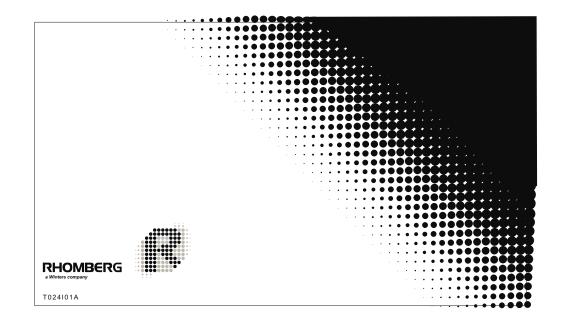
□ Set LOC to OFF to allow full access to all functions

- Set LOC to I to only allow access to Setpoint Temperature(SV), ALH, ALL, t1, r1, t2, r2 and LOC.
- Set LOC to all allow access to Setpoint Temperature(SV) and LOC. Set LOC to 3 to only allow access to LOC.

With any one of the restricted levels selected (LDC status 1,2 or 3) the lock status will be indicated as LDC Dn. To remove the lock restriction, select the LOC function. Press and hold the Up and Down keys simultaneously until LOC, DFF is displayed. The controller will now allow full access to all functions.

25

Message	Condition	Remedy
Err I	Measured temperature is below sensor's specified minimum	Select more appropriate senso type.
	Controller input failure	Factory Repair
Err 2	Measured temperature is above sensor's specified maximium	Select more appropriate senso type.
	Sensor cable open circuit (burn out)	Replace sensor
	Sensor incorrectly connected	Check connections
	Controller Input failure	Factory Repair
Err 3	Ambient temperature >50°C	Reduce the Controllers operating temperature
	Cold junction failure	Factory repair


TC515 - Specifications

Controller S	Speci	ifica	tio	ns:			E	MC	prot	ection	rating		General Specif	ications:
Setting Accuracy		± 1%					Ra	adiate	d Sus	ceptibility	IEC 801-3, C	Class 3	Operating Temperature	0 - 50°C
Linearisation Accu	racy	± 0.3%			Ra	Radiated Emission CISPR1			CISPR11, C	lass B	Humidity	5-85% non-condensing		
Cold Junction Trac	king	0.05°	°C per	r °C			C	ondu	cted	Susceptibi	ill5C 255-22-	1, Class II	Storage Temperature	-20°C to 70°C
Sampling Period		70ms						onduc	ted Er	nission	CISPR11, C	lass B	Protection Class (Front Pa	n##)54
Control Method		PID, 0	On/Of	f or 1	'rip & l	Recov		onti)utput (Options:		Protection Class (Rear)	IP30
PID Relay Cycle P	eriod	1 - 24	40sec	s				elav		Juipui	250V AC, 8A	SPDT	Connection	Plug-connector
On/Off Control Hys	steresis	0 - 99	9.9°					SR D	rive		8-28V DC at		Weight	250g
Proportional Band		50°					Ā	larr	n O	utput O	ptions:		Standards	CE Mark
Integral Time		36s						elay			250V AC, 8A		Creepage Distance	VDE 0110 (Group C 250
Derivative Time		5s					S	SR Di	ive		8-28V DC at	t 10mA		IEC 664/664A/DE 0435
Timer Range		1 - 99	99 mir	nutes									Power Supply:	
Timer Accuracy		0.1% 1 mir	of pr	eset t	ime								Power Supply	21 - 53V AC/DC 85 - 265V AC/DC
Input Spec	ificat												Power Consumption	Less than 3VA
Operating	mea			Senso	or Typ	e				1			Display Specif	ications:
	PT100	Е	J	K	R	s	т	в	N				PV Display Type	3 x 10mm red
Upper Limit C	800	950	750	999	999		380	999	999				SV Display Type	3 x 7mm green
°F	999	999	999	999	999		716	999	999				Resolution (PV, SV)	1°C (SV 0,1° from -9,9° - 99,9°)
													Temperature Display Rar	
Lower Limit °C °F	-99 -99	-99 -99	-99 -99	-99 -99	-40 -40	-40 -40	-99 -99	50 122	-99 -99				Temperature Display Ran	

TC600	- Sp	ecific	cations	5

Controller S	speci	fica	atio	ns:			Е	MC	pro	tection	rating	General Specifi	ications:
Setting Accuracy		± 1%	<u>،</u>				R	adiate	ed Sus	sceptibility	IEC 801-3, Class 3	Operating Temperature	0 - 50°C
Linearisation Accur	racy	± 0.3	1%					Radiated Emission			CISPR11, Class B	Humidity	5-85% non-condensing
Cold Junction Trac	king	0.05	°C per	r °C				Conducted Susceptibility			IEC 255-22-1, Class II	Storage Temperature	-20°C to 70°C
Sampling Period		70ms						Conducted Emission CISP			CISPR11, Class B	Protection Class (Front Pa	n 67) 54
Control Method		PID, 0	On/Off	f or Tr	ip & I	Reco	ver					Protection Class (Rear)	IP30
PID Relay Cycle Pe	eriod	1 - 24	40sec	s			Ĭ	Relav	101	Juipui	250V AC. 8A. SPDT	Connection	Plug-connector
On/Off Control Hys	teresis	0 - 9	9.9°					SSR [8-28V DC at 10mA	Weight	250g
Proportional Band		50°						Analogue (0 - 20mA	Standards	CE Mark
Integral Time		36s									4 - 20mA	Creepage Distance	VDE 0110 (Group C 250
Derivative Time		5s						Analo			0 - 5V at 10mA 0 - 10V at 10mA		IEC 664/664A/DE 0435
Timer Range		1 - 9	99 mir	nutes				Analogue 0 - 10V at 10mA				Power Supply:	
Timer Accuracy		0.1%	of pre	eset ti	me		Relay			utput O	250V AC, 8A, SPST (N.		21 - 53V AC/DC
Timer Resolution		1 mir	nute					SR D	Drive		8-28V DC at 10mA		85 - 265V AC/DC
nput Specif	ficati	ions		-								Power Consumption	Less than 3VA
Operating	inout						Sensor Type						cations:
	PT100	Е	J	к	R	S	Т	В	N			PV Display Type	4 x 10mm red
Upper Limit C	800	950	750	1250 1	450	1450	380	1700	1300			SV Display Type	4 x 7mm green
°F	1472	1742	1382	2282 2	2642	2642	716	3092	2372			Resolution (PV, SV)	1°C (0,1° from -9,9° - 99,9°)
Lower Limit C	-200	-200	-99	-200	-40	-40	-200	50	-270			Temperature Display Re	
٩F	-328	-328	-146	-328	-40	-40	-328	122	-454	J		Temperature Display K	H2000 C

Notes	
	RHOMBERG

